Export 470 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Rhein RK, Callahan PG, Murray SP, Stinville J-C, Titus MS, Van der Ven A, Pollock TM.  2018.  Creep Behavior of Quinary γ′-Strengthened Co-Based Superalloys. Metallurgical and Materials Transactions A. 49:4090–4098.
Steuer S, Hervier Z, Thabart S, Castaing C, Pollock TM, Cormier J.  2014.  Creep behavior under isothermal and non-isothermal conditions of AM3 single crystal superalloy for different solutioning cooling rates. Materials Science and Engineering: A. 601:145–152.
Pollock TM.  1998.  Creep deformation and the evolution of precipitate morphology in nickel-based single crystals. Modelling of Microstructural Evolution in Creep Resistant Materials. :1998.
Cao F, Pollock TM.  2008.  Creep deformation mechanisms in Ru-Ni-Al ternary B2 alloys. Metallurgical and Materials Transactions A. 39:39–49.
Eggeler YM, Titus MS, Suzuki A, Pollock TM.  2014.  Creep deformation-induced antiphase boundaries in L1 2-containing single-crystal cobalt-base superalloys. Acta Materialia. 77:352–359.
Cervellon A., Yi J.Z, Corpace F., Hervier Z., Rigney J., Wright P.K, Torbet C.J, Cormier J., Jones J.W, Pollock T.M.  2020.  Creep, Fatigue, and Oxidation Interactions During High and Very High Cycle Fatigue at Elevated Temperature of Nickel-Based Single Crystal Superalloys. Superalloys 2020.
THOMPSON AW, Pollock TM.  1991.  Creep of $\alpha$ 2+ $\beta$ Titanium Aluminide Alloys. ISIJ International. 31:1139–1146.
Avallone JT, Nizolek TJ, Bales BB, Pollock TM.  2019.  Creep resistance of bulk copper–niobium composites: An inverse effect of multilayer length scale. Acta Materialia. 176:189–198.
Pollock TM, Argon AS.  1990.  Creep Resistance of CMSX-3 Nickel Base Superalloy Single Crystals: Experimental Observations.
Pollock TM, Argon AS.  1990.  Creep Resistance of CMSX-3 Nickel Base Superalloy Single Crystals: Source of Resistance.
Pollock TM, Argon AS.  1992.  Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metallurgica et Materialia. 40:1–30.
POLLOCK TRESAM, ARGON ALIS.  1990.  Creep resistance of nickel-base superalloy single crystals. Creep and fracture of engineering materials and structures. :287–301.
Titus MS, Eggeler YM, Suzuki A, Pollock TM.  2015.  Creep-induced planar defects in L1 2-containing Co-and CoNi-base single-crystal superalloys. Acta Materialia. 82:530–539.
Torralva B, Ma S, Kumar A, Yalisove SM, Pollock TM, Thornton K.  2011.  The Critical Role of Shock Melting in Ultrafast Laser Machining. Minerals, Metals and Materials Society/AIME, 420 Commonwealth Dr., P. O. Box 430 Warrendale PA 15086 United States.[np]. Feb.
Miao J, Pollock TM, J Jones W.  2009.  Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature. Acta Materialia. 57:5964–5974.
Zhang X, Stinville J-C, Pollock T, Dunne F.  2021.  Crystallography and elastic anisotropy in fatigue crack nucleation at nickel alloy twin boundaries. Journal of the Mechanics and Physics of Solids. 155:104538.
Vermaak N, Mottura A, Pollock TM.  2013.  Cyclic oxidation of high temperature coatings on new $\gamma$′-strengthened cobalt-based alloys. Corrosion Science. 75:300–308.
Feng Q, Tryon B, Carroll LJ, Pollock TM.  2007.  Cyclic oxidation of Ru-containing single crystal superalloys at 1100 C. Materials Science and Engineering: A. 458:184–194.
Muir C., Swaminathan B., Almansour A, Sevener K, Smith C., Presby M, Kiser J., Pollock T., Daly S..  2021.  Damage mechanism identification in composites via machine learning and acoustic emission. npj Computational Materials. 7:95.
Cervellon A, Ormastroni LMaria Bort, Hervier Z, Pollock TM, Pedraza F, Cormier J.  2021.  Damage mechanisms during very high cycle fatigue of a coated and grit-blasted Ni-based single-crystal superalloy. International Journal of Fatigue. 142
Cormier J, Stinville J-C, Suave LMataveli, Mauget F, Patrick V, Marcin L, Pollock T.  2022.  Damage Nucleation During Transverse Creep of a Directionally Solidified Ni-based Superalloy. Materials Science and Engineering A. 858:144089.
Pinz M, Weber G, Stinville J-C, Pollock T, Ghosh S.  2021.  A Data-Driven Bayesian Model for Predicting Fatigue Crack Nucleation in Polycrystalline Ni-Based Superalloys. SSRN Electronic Journal.
Pinz M, Weber G, Stinville J-C, Pollock T, Ghosh S.  2022.  Data-driven Bayesian model-based prediction of fatigue crack nucleation in Ni-based superalloys. npj Computational Materials. 8
Banerjee A, Rossin J, He M-R, Musinski W, Shade P, Cox M, Schwalbach E, Pollock T, Hemker K..  2023.  Decoupling build orientation-induced geometric and texture effects on the mechanical response of additively manufactured IN625 thin-walled elements. Materials Science and Engineering: A. 870:144826.