Publication Type:
Journal ArticleSource:
Proceedings of the National Academy of Sciences, Volume 114, p.10548–10553 (2017)URL:
http://www.pnas.org/content/114/40/10548Abstract:
<p>
Higher carrier mobility can contribute to a larger power factor, so it is important to identify effective means for achieving higher carrier mobility. Since carrier mobility is governed by the band structure and the carrier scattering mechanism, its possible enhancement could be obtained by manipulating either or both of these. Here, we report a substantial enhancement in carrier mobility by tuning the carrier scattering mechanism in n-type Mg3Sb2-based materials. The ionized impurity scattering in these materials has been shifted into mixed scattering by acoustic phonons and ionized impurities. Our results clearly demonstrate that the strategy of tuning the carrier scattering mechanism is quite effective for improving the mobility and should also be applicable to other material systems.Achieving higher carrier mobility plays a pivotal role for obtaining potentially high thermoelectric performance. In principle, the carrier mobility is governed by the band structure as well as by the carrier scattering mechanism. Here, we demonstrate that by manipulating the carrier scattering mechanism in n-type Mg3Sb2-based materials, a substantial improvement in carrier mobility, and hence the power factor, can be achieved. In this work, Fe, Co, Hf, and Ta are doped on the Mg site of Mg3.2Sb1.5Bi0.49Te0.01, where the ionized impurity scattering crosses over to mixed ionized impurity and acoustic phonon scattering. A significant improvement in Hall mobility from \~{}16 to \~{}81 cm2.V-1.s-1 is obtained, thus leading to a notably enhanced power factor of \~{}13 μW.cm-1.K-2 from \~{}5 μW.cm-1.K-2. A simultaneous reduction in thermal conductivity is also achieved. Collectively, a figure of merit (ZT) of \~{}1.7 is obtained at 773 K in Mg3.1Co0.1Sb1.5Bi0.49Te0.01. The concept of manipulating the carrier scattering mechanism to improve the mobility should also be applicable to other material systems.
</p>