Title | Rapid Screening of Single Phase Refractory Alloys Under Laser Melting Conditions |
Publication Type | Journal Article |
Year of Publication | 2024 |
Authors | Mullin KM, Frey C, Lamb J, Wu SK, Echlin MLP, Pollock TM |
Journal | Materials & Design |
Pagination | 112726 |
ISSN | 0264-1275 |
Keywords | Additive manufacturing, high entropy alloy, multi-principal element alloy, refractory alloys, solid-state cracking, solidification cracking |
Abstract | Refractory alloys can be difficult to fabricate by laser-based manufacturing methods due to their high melting temperatures, high interstitial solubility, and propensity for low temperature brittleness. Laser-based processes, such as welding and additive manufacturing (AM), yield similar populations of defects, including microsegregation and solidification and solid-state cracking. Given the extreme challenges and cost associated with the production of refractory powders, this research aimed to develop a rapid screening methodology that combines predictive defect formation metrics with single track melting experiments. A flexible single laser track melting platform was designed to perform screening experiments on conventional and multi-principal element refractory alloys across a wide range of laser energy inputs. The platform was employed to investigate laser melting on solid substrates, or on a substrate with a single layer of powder feedstock, and is demonstrated with the highly fabricable Nb-base alloy C103. Preliminary investigations are performed on refractory multi-principal element alloys in the Hf-Mo-Nb-Ta-Ti family, and significant differences in cracking resistance and solidification morphology are observed. Implications for future alloy design and processing strategies for defect-resistant refractory alloys for AM are discussed. |
URL | https://www.sciencedirect.com/science/article/pii/S0264127524000984 |
DOI | 10.1016/j.matdes.2024.112726 |