Controlling n-Type Doping in MoO3

TitleControlling n-Type Doping in MoO3
Publication TypeJournal Article
Year of Publication2017
AuthorsH. Peelaers, M.L. Chabinyc, and C.G. Van de Walk
Date PublishedMAR 28

We study the electronic properties of native defects and intentional dopant impurities in MoO3, a widely used transparent conductor. Using first-principles hybrid functional calculations, we show that electron polarons can be self-trapped, but they can also bind to defects; thus, they play an important role in understanding the properties of doped MoO3. Our calculations show that oxygen vacancies can cause unintentional n-type doping in MoO3. Mo vacancies are unlikely to form. Tc and Re impurities on the Mo site and halogens (F, Cl, and Br) on the O site all act as shallow donors but trap electron polarons. Fe, Ru, and Os impurities are amphoteric and will compensate n-type MoO3. Mn dopants are also amphoteric, and they show interesting magnetic properties. These results support the design of doping approaches that optimally exploit functionality.