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We study the uniaxial compressive behavior of disordered colloi-
dal free-standing micropillars composed of a bidisperse mixture of
3- and 6-μm polystyrene particles. Mechanical annealing of confined
pillars enables variation of the packing fraction across the phase
space of colloidal glasses. The measured normalized strengths and
elastic moduli of the annealed freestanding micropillars span almost
three orders of magnitude despite similar plastic morphology gov-
erned by shear banding. We measure a robust correlation between
ultimate strengths and elastic constants that is invariant to relative
humidity, implying a critical strain of ∼0.01 that is strikingly similar
to that observed in metallic glasses (MGs) [Johnson WL, Samwer K
(2005) Phys Rev Lett 95:195501] and suggestive of a universal mode
of cooperative plastic deformation. We estimate the characteristic
strain of the underlying cooperative plastic event by considering the
energy necessary to create an Eshelby-like ellipsoidal inclusion in an
elastic matrix. We find that the characteristic strain is similar to that
found in experiments and simulations of other disordered solids
with distinct bonding and particle sizes, suggesting a universal cri-
terion for the elastic to plastic transition in glassy materials with the
capacity for finite plastic flow.

plasticity in disordered solids | shear transformation |
cooperative deformation | Eshelby inclusion | colloidal glasses

In an ideal, defect-free system, the relationship between a
material’s elastic constants and yield strength is indicative of

the underlying plastic event that generates macroscopic yielding.
For the case of a crystalline solid, Frenkel predicted the ideal
yield stress by estimating the energy necessary to cooperatively
shear pristine crystallographic planes. The result estimates that
the ideal shear strength, τy;ideal, scales linearly with the shear
modulus, μ, as τy;ideal = μ=2π (1). This simple, yet striking, pre-
diction implies a singular critical shear strain for yielding, irre-
spective of the material. Experimental strengths of crystalline
metals, however, are found to fall orders of magnitude short of
Frenkel’s ideal strength, suggestive of plasticity generated by
mechanisms other than cooperative slip. In real bulk crystals,
microstructural defects, such as dislocations, grain boundaries,
and surfaces, become plastically active at stresses well below
τy;ideal, implying a transition to a far less cooperative plastic de-
formation mechanism. Controlling the character and number
density of these defects mediates the strength of crystals; for
instance, the Hall-Petch relationship for polycrystals (2, 3) states
that τy ∼ d−1=2, where τy is the yield strength and d is the grain size
(thus controlling the fraction of planar defects), and Taylor
strengthening (4) predicts τy ∼ ρ1=2, where ρ is the dislocation
density. This ability to tailor material strength is a reflection of the
large catalog of plastic events found in crystals and the associated
broad range of energies necessary for their operation. In such
defected crystals, the highly cooperative shear mechanism that
defines the intrinsic ideal strength is superseded by mechanisms
that require the motion of only a few atoms (e.g., dislocation glide
or climb), rather than the coordinated motion of many atoms.

Metallic glasses (MGs)—amorphous alloys—on the other hand,
exhibit a surprisingly robust relationship between yield strength
and elastic constants despite their atomic heterogeneity and
absence of long-range order. Various MG alloys have been syn-
thesized with shear moduli that range from 10 to 80 GPa (5). Re-
markably, an approximately universal critical shear strain limit of
γy ≈ 0:02, where γy = τy=μ, has been measured (6) and directly
demonstrated via atomistic simulations of MGs (7). Whereas struc-
tural modifications of the MGs through processes such as thermal
treatment (8), severe plastic deformation (9), and ion-beam irradi-
ation (10, 11) have been shown to alter the strength and ductility
of MG alloys, the extent of strength variation is far below that of
crystalline metals, which is suggestive of a single fundamental
plastic event unique to MGs. Furthermore, the characteristic
failure mode observed in MGs—“shear banding,” in which plastic
strain is localized in thin bands of the material—is also found in
amorphous solids composed of nanoparticles, colloids, and grains
(12–14). The fact that a common failure mode is observed in
amorphous solids with very different characteristic length scales
and interparticle interactions has led to the proposal that the
fundamental plastic event found in MGs may in fact be universal
to all amorphous solids. Indeed, direct visualizations of sheared
3D colloidal systems suggest cooperative shearing of collections
of particles (13, 15, 16), although the link between these inelastic
building blocks and macroscopic yielding is still not clear.
In this article, we report on free-standing amorphous colloidal

micropillars with compressive strengths that also exhibit a robust
correlation with elastic constants and thus a universal elastic
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limit. By varying the packing fraction, ϕ, we are able to vary the
maximum transmitted force, equivalent to strength, and the
elastic constants over almost three orders of magnitude. We
reconcile the robustness of the measured relationship by con-
sidering the energetics of the fundamental plastic event at
criticality that is believed to underlie yielding in amorphous
solids. This approach is based on the cooperative rearrangement
first proposed by Argon following observations of sheared
amorphous bubble rafts (17). The idea has since been extended
in several models, including the cooperative shear model (CSM)
of Johnson and Samwer (6, 18) and the shear transformation
zone (STZ) theory of Falk and Langer (19, 20). Our analysis
results in an estimation of the characteristic transformation
strain of a cooperative rearrangement with a magnitude that
bears striking resemblance to that estimated in MGs, supporting
the notion of a characteristic cooperative mechanism for plas-
ticity in amorphous solids.
We previously reported on a synthesis route for producing free-

standing colloidal micropillars with cohesive particle–particle
interactions (21). Briefly, capillaries are filled with colloidal sus-
pensions, subsequently dried, and carefully extruded to produce
free-standing specimens for uniaxial mechanical testing. The
pillars relevant to the current work are 580 μm in diameter and
composed of a bidisperse mixture of 3.00- and 6.15-μm-diameter
polystyrene (PS) spheres. The mixture is prepared with a volume
ratio VL=VS ≈ 1:0, where VL and VS are the total volumes of the
6.15- and 3.00-μm spheres, respectively. The bidisperse mixture is
chosen to suppress crystallization; optical and electron micros-
copies are used to confirm amorphous packing.
We developed a novel mechanical annealing procedure to

alter the packing fraction ϕ—and consequently the mechanical
response—which is described as follows. After allowing the
suspension of colloidal particles to dry within the capillary tube,
two steel wires with diameters slightly smaller than the capillary
diameter are inserted into both ends of the tube, rendering the
packing fully confined (Fig. 1A). A piezoelectric actuator is brought
into contact with one of the wires and the opposite wire is coupled
to a force transducer, enabling measurement of the axial force.
Sinusoidal displacements ( f = 0:5− 5 Hz, A= 0:60− 3:60 μm) are
produced by the actuator, which remains in contact with the wire.
The displacement periodically loads and unloads the pillar about
the mean confining force ðFconf ∼ 0:1− 10 NÞ, resulting in a gradual
densification of the pillar and an increase in ϕ. After mechanically
annealing the pillar from one side, the capillary tube orientation
is reversed, and the process is repeated from the other side to
promote uniform compaction. Varying the confining force in ad-
dition to the amplitude, frequency, and number of displacement
cycles allows for some control of compaction. Following anneal-
ing, the average packing fraction of the confined micropillar, hϕi,
is determined by measuring the diameter, D, length, L, and mass,
mfilled, using high-resolution optical microscopy and microbalance
measurements, respectively. On completion of mechanical testing,
the mass of the empty capillary tube, mempty, is measured. Using
the density of PS, ρPS, the packing fraction is determined as

hϕi=Vsolid=Vbulk =

�
mfilled −mempty

��
ρPS

πD2L=4
:

Our mechanical annealing procedure produced pillars with
0:528≤ hϕi≤ 0:684. For our mixture of particles, the random
close packing limit (RCP) is predicted to be ϕ= 0:678 (22). The
lower bound, random loose packing (RLP), for a bidisperse mix-
ture of frictional, cohesive particles is not known, but rheology
measurements on a bidisperse mixture of hard spheres with similar
diameter

�
DL
DS

�
and total volume

�
VL
VS

�
ratios show a fluidity limit,

marked by a large increase in viscosity, at ϕ≈ 0:53 (23). Thus, our
pillars span the full spectrum of glass packing.

Following our annealing steps, the micropillars were prepared
for uniaxial compression. The micropillars are made free standing
by extruding a desired length from the capillary using a precision
drive screw (Fig. 1B). As the pillars are oriented with their major
axes perpendicular to the force of gravity, the stability of our
free-standing micropillars suggests strong cohesive particle–
particle interactions. Between one and four free-standing speci-
mens are obtained from each capillary, and thus fluctuations in
hϕi from specimen to specimen are not quantified. We opted for
the pillar geometry owing to both a nominally simple (uniaxial)
stress state and for facile comparison with previous work on MGs
(24–26). Our experimental setup also contains an environmental
chamber, enabling control of the relative humidity (RH) during
testing. Our previous work has shown that RH can alter the
stiffness of a single pillar, which we attribute to variations in the
amount of water contained within the pillar structure, affecting
the number and connectivity of capillary bridges that form be-
tween particles (and thus the cohesive interactions) (21). Re-
flectance confocal micrographs acquired during compression
are used to digitally determine the displacement of the punch
and the base of the pillar and therefore allow axial strain within
the pillar to be calculated. For more details on the experimental
setup, refer to ref. 21.
Mechanical responses for specimens with hϕi= 0:559 and hϕi=

0:684 are shown in Fig. 1 C and D. Both specimens exhibit an
initial loading regime where the transmitted force, F, increases
linearly with Δl=lo (Δl and lo are the change in length and un-
deformed length of the pillar, respectively). For the hϕi= 0:559
specimen, significant structural evolution is observed in the micro-
graphs for Δl=lo >Δl=lojFmax

, and the subsequent load drop
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Fig. 1. (A) The mechanical annealing setup. The colloidal pillar is confined
within a capillary by two steel wires between the actuator and the force
transducer, and a sinusoidal displacement is generated by the actuator,
leading to compaction of the pillar. (B) The uniaxial compression setup.
Extruding the pillar results in a freestanding sample that is compressed in
situ in a confocal microscope. (C) Mechanical response of a lightly annealed
pillar with hϕi= 0:559 compressed at 30% RH. The measured effective elastic
modulus is Eload = 4:81 MPa and σmax = 74:8 kPa. (D) Mechanical response of
a highly annealed pillar with hϕi= 0:684 compressed at 30% RH, resulting in
Eload = 229 MPa and σmax =1,880 kPa.
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correlates with the development of a system-spanning shear
band. Further displacement shears the pillar along the band until
final fracture. The hϕi= 0:684 specimen exhibits a series of
elastic loadings and load drops that correspond with the for-
mation of multiple shear bands. A plastic morphology char-
acterized by one or more shear bands, typically emanating
from the punch, is consistently observed, irrespective of hϕi
(Fig. S1). We define the ultimate compressive strength of the
micropillars as the maximum normalized force, Fmax=Ao ≡ σmax
(Ao is the cross-sectional area of the undeformed pillar), sus-
tained by a pillar during a compression cycle. We also define an
effective elastic modulus on loading, Eload, based on a linear fit to
F=Ao vs. Δl=lo between initial loading and the first yielding event.
Previously, we measured the mechanical dissipation in a dense
micropillar at different RHs (21). Briefly, we found that at RHs
up to ∼30%, ∼80% of the work done on loading was recovered
on unloading for small total strains ðΔl=lo ∼ 0:003Þ. Increasing
RH beyond 30% reduced the amount of energy recovered on
unloading. Neglecting dissipation results in an underestimation of
the elastic component of stiffness (see analysis in SI Text and Figs.
S2 and S3); the consequences of underestimating the true elastic
modulus will be discussed later.
The measured ultimate strengths and effective elastic moduli

for 27 micropillar specimens are shown in Fig 2 A and B. Both
Fmax=Ao and Eload are found to vary by more than 2.5 orders of
magnitude over the range of hϕi studied, corresponding to

relatively loose and dense packings in the limit of low and high
hϕi, respectively. We contend that σmax is the best measure of the
intrinsic strength of the pillar because plastic activity localized
near the punch, which occurs at lower levels of applied stress, is
likely a result of surface roughness and not representative of the
of the bulk structure of the micropillar. Surprisingly, σmax and
Eload appear to be relatively insensitive to RH in the range
covered in these experiments.
Our measurements demonstrate a strong correlation between

σmax and Eload of individual disordered micropillars (Fig. 2C),
with a slope of 0:009± 0:0009 that is invariant to hϕi and RH
(shown by coloring and shape of markers, respectively, in Fig.
2C). The robust relationship between σmax and Eload is suggestive
of a unique and cooperative plastic event that establishes the
maximum strain the micropillars can withstand before macro-
scopically failing. The insensitivity of this universal scaling to RH
also suggests that the details of interparticle interactions do not
influence the critical strain, which implies a plasticity mechanism
that is universal to disordered solids with the capacity for finite
plastic flow. This notion is further bolstered by the remarkable
similarity of our measured scaling to that compiled from com-
pressive behavior of MGs by Johnson and Samwer (6) as shown
in Fig. 2C. We further note that such scaling between strength
and elastic constants has been reported in atomistic simulations
of nanocrystalline alloys (27), which in the limit of diminishingly
small grain sizes have been shown to exhibit cooperative
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Fig. 2. (A) The normalized maximum transmitted force, σmax vs. hϕi, and (B) the normalized stiffness, Eload , vs. hϕi. See SI Text for error analysis. The error is
smaller than the data marker for the majority of measurements. (C) The normalized maximum transmitted force, σmax , vs. Eload showing a robust correlation
that is relatively invariant with hϕi (represented by data marker color; black represents pillars where hϕi measurements were not available). Colloidal micropillar
measurements are compared with yield strength and Youngsmodulus values for metallic glasses (6) and glassy polymers (38). The dashed line shows the best linear
fit to the colloidal data with slope 0:009± 0:0009, representing the critical strain for failure. See SI Text for error analysis. The error is smaller than the data marker
for the majority of measurements.
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mechanisms of plasticity reminiscent of metallic glasses (e.g.,
shear banding, pressure-sensitive yield criteria) (28).
To understand the scaling relationship in our relatively athermal

colloidal micropillars, we model the fundamental building block
of cooperative plastic flow in the framework of Eshelby-like elas-
ticity. Specifically, we consider the change in free energy associated
with the introduction of an ellipsoidal inclusion—representing
the cooperative shear transformation—in an elastic matrix sub-
jected to an applied far-field stress. This approach is motivated
by experiments (15, 17, 29) and simulations (30, 31) on the de-
formation of amorphous solids that suggest that the fundamental
plastic event is a cooperative, shear-induced rearrangement of
∼10-100 particles (32), referred to as a shear transformation
zone (STZ) (Fig. 3). After operation, in which the STZ evolves
from the initial to the deformed state, an elastic strain field is
generated in the STZ and the surrounding matrix owing to
elastic compatibility. The corresponding change in the Gibbs free
energy due to the introduction of an inclusion in a finite elastic
matrix subjected to an applied stress has been analyzed using
Eshelby’s method, where the confined transformation is modeled
by allowing for a stress-free unconfined transformation followed
by reinsertion into and elastic accommodation by the matrix (33–
35). In addition to the elastic energy of the confined shear
transformation, the applied stress field interacts with the stress
field generated by the inclusion, resulting in an extra part of the
Gibbs free energy (34) (see derivation in SI Text). Taken to-
gether, the elastic energy and interaction terms yield a simple
expression for the change in the Gibbs free energy associated
with the introduction of the inclusion

ΔG=−
1
2

Z
Ω

σIije
T
ij dV −

Z
Ω

σ∞ij e
T
ij dV

ΔG=−
Ω
2
σIije

T
ij −Ωσ∞ij e

T
ij :

[1]

Here, σIij is the stress field inside the confined inclusion, eTij is
the unconfined transformation strain of the inclusion, σ∞ij is the
applied far-field stress, and Ω is the volume of the inclusion. The
integrals are readily evaluated because the stress and strain fields
inside of an ellipsoidal inclusion are spatially uniform. The stress
field inside the inclusion can be written as

σIij =CijklðSklmn − δkmδlnÞeTmn; [2]

where Cijkl is the stiffness tensor, Sklmn is Eshelby’s tensor, and δij is
the Kronecker delta. Eshelby’s tensor relates the unconfined trans-
formation strain of the inclusion to the confined strain of the

inclusion (i.e., the strain after being reinserted in the matrix) (33).
The shear bands that form in the micropillars are oriented approx-
imately 45° from the pillar axis, which is similar to the orientation of
shear bands found in compressed BMGs (bulk metallic glass) (26)
and soil pillars (12). Although it is believed that the nature of
external loading may bias the orientation of shear bands (toward
the pillar axis in compression) (36), we lack the ability to measure
shear band orientation to such precision. Therefore, for the energy
analysis, we neglect any strong pressure-dependent yielding and
assume a triaxial (i.e., each axis is unique in its length, a> b> c)
ellipsoidal inclusion with the major axis, a, lying along the direction
of maximum shear stress, α= 45° (Fig. 3). Following the work of
Argon and Shi, we define the transformation strain of the uncon-
fined inclusion as

eTij =
eTo
3

2
4 1 0 0
0 1 0
0 0 1

3
5+

γTo
2

2
4 0 1 0
1 0 0
0 0 0

3
5;

which can be described by the scalar dilatational strain magnitude
eTo and the the scalar shear strain magnitude γTo . Furthermore, we
assume the transformation dilatancy β≡ eCo =γ

C
o ≈ 1 (37). The su-

perscript C denotes the confined transformation strain and may be
related to the unconfined transformation strain with superscript
T by Eshelby’s tensor Sijkl (37). Assuming an isotropic elastic me-
dium, Eq. 2 reduces to

σIij =
2EeTo

9ðν− 1Þ

2
4 1 0 0
0 1 0
0 0 1

3
5+

EγTo ð7− 5νÞ
30ðν2 − 1Þ

2
4 0 1 0
1 0 0
0 0 0

3
5;

where E is Youngs modulus, and ν is Poisson’s ratio (39).
This expression represents the self-stress of the inclusion, which
is completely defined by the material’s elastic constants, E and
ν, and the transformation strain magnitudes eTo and γTo . For
uniaxial compression and the reference basis defined in Fig. 3,
σ∞ij can be written as

σ∞ij =
σ

2

2
4−1 1 0

1 −1 0
0 0 0

3
5;

where σ =F=Ao is the applied stress, and compression is nega-
tive. Eq. 1 then reduces to

ΔG=
ΩE
ν2 − 1

"
ν+ 1
9

 
eTo
β

!2

+
7− 5ν
60

�
γTo
�2#

+
ΩσγTo
2

−
ΩσeTo
3β

: [3]

With the assumption that β= 1, eTo can be related to γTo (SI
Text). We assume that at σmax, ΔG= 0, and on a further increase
in the applied stress, the introduction of an inclusion (i.e., oper-
ation of a shear transformation) becomes energetically favorable.
The relationship between strength and stiffness thus becomes (see
SI Text for full expression for Θ)

σmax

E
= γToΘðν; β= 1Þ: [4]

We assume E=Eload and values of ν between 0.15 (14) and
0.45 and find a best fit for the data with γTo as the free parameter.
Over the range of considered, γTo ranges from 0.026 for ν= 0:45
to γTo = 0:033 for ν= 0:15; thus, γTo is largely insensitive to ν.
Because our system is dissipative, the true elastic modulus is
larger than the stiffness measured on loading. Assuming that
50% of the work done on the system during loading is stored as
elastic energy (21), the true elastic modulus is underestimated by

x1

x2

α    45º=

A B

Fig. 3. (A, Upper) An idealized cooperative rearrangement induced by an
applied shear stress. (Lower) A continuum representation of the rearrange-
ment. (B) The reference axes defined for the energy analysis. The ellipsoid’s
major axis, a, lies along x1 and its minor axis, c, lies along x2.
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a factor of 2 (2Eload =Eelastic; see SI Text and Figs. S2 and S3 for
load-unload measurements and evidence of quasi-linear load-
ing). This error results in an overestimation of γTo by a factor of 2.
Therefore, we take γTo =2 and γTo as bounds on the magnitude of
the characteristic transformation shear strain. Dissipation is
likely a result of a combination of frictional sliding at particle
contacts and STZ activity. Recent experiments of sheared jam-
med particles at an interface (12) have shown that below a crit-
ical strain of 2%, STZ activity, although present, is minimal. In
this confined system, the dramatic increase in STZ operation at
the critical strain results in a rapid increase in the loss modulus.
In our free-standing pillars, the instability manifests as macro-
scopic yield and the development of shear bands. Our motivation
in setting ΔG= 0 at σmax is to extract a critical strain at which
STZs are sufficiently active to lead to shear banding.
The magnitude of γTo found using this analysis of our micropillar

data is similar to the values found in simulations of disordered
Lennard–Jones particles (39) and experiments of sheared bubble
rafts (17) in which displacement fields can be measured directly.
Dasgupta et al. compared the nonaffine displacement fields gen-
erated by an STZ in a molecular dynamics simulation to the
displacement field generated by a general Eshelby trans-
formation strain (39). These authors found good agreement
between the fields when using a traceless Eshelby transformation
strain with two nonzero eigenvalues and γTo = 0:08, which agrees
well with our value of ∼ 0:03. Argon estimated a shear trans-
formation strain value γTo = 0:125 based on observations of bub-
ble rafts (32), and Argon and Shi later extracted a range of
γTo ≈ 0:10∼ 0:14 for MGs (37) using a viscoplasticity model.
Particle-level measurements of the transformation strain around
a rearrangement in a sheared colloidal glass find γTo ≈ 0:08∼ 0:26
(15). Recent kinetic Monte Carlo (kMC) simulations of MGs
that have been successful in capturing shear band formation
use a characteristic STZ strain γTo = 0:10 when determining the
free-energy change associated with STZ operation (35, 40, 41).
This similiarity in shear transformation kinematics surprisingly
extends to other classes of amorphous solids. Simulations of
sheared amorphous silicon—a network glass with strongly di-
rectional bonding—show γTo ∼ 0:015 (42). The authors of this
study note that, although the characteristic size of shear trans-
formations appears to be bonding dependent (∼1 nm in metallic
glasses, ∼3 nm in amorphous silicon, and ∼10 nm in glassy poly-
mers) (42), γTo remains similar across systems. Indeed, glassy
polymers that are known to develop shear bands on yielding, such
as polymethyl methacrylate (PMMA) (43) and PS (44), show shear
transformation strains similar to those of MGs (γTo ≈ 0:11 and
γTo ≈ 0:08 for PMMA and PS, respectively) (38) (see SI Text, Fig.
S4, and Table S1 for a table of compiled experimental values of γTo
and γy for MGs, glassy polymers, and the colloidal micropillars in
this work). The robust critical strain appears to break down in
glasses that show deformation morphology other than shear
banding. For example, the macroscopic critical shear strain in
amorphous silica nanowires that exhibit brittle behavior and
cleavage fracture is γy ≈ 0:2 (45), much larger than the value

found in MGs and glassy polymers. Thus, the cooperative shear
mechanism discussed in this work hinges on the intrinsic capacity
for plastic flow that precedes final fracture.
This simple model does not capture the complex dynamical

interaction of activated and nucleating STZs that determine
the ultimate deformation morphology, which likely governs
the extent of plastic deformation and the spatio-temporal
evolution from individual STZ operation to macroscopic
shear localization. However, the robustness of the correlation
between σmax and Eload for a wide range of structural config-
urations brought about by mechanical annealing suggests that
incipient operation of STZs and macroscopic plastic flow along
shear planes occur nearly simultaneously. In other words, the
transition from the quasi-elastic to plastic regimes is sharp with
respect to stress. This can be inferred as a signature of a system
driven in the athermal limit with a relatively narrow distribution
of barrier energies defining the fundamental unit of plastic de-
formation. In contrast to thermal systems, such as metallic
glasses, maneuvering within the complex potential energy land-
scape of our athermal colloidal systems is not aided by thermal
activation. We assert that our system is athermal by considering
the nondimensional parameter kBT

e , where kB is Boltzmann’s
constant, T is the temperature, and « is a measure of the in-
teraction energy between particles assuming Hertzian contact.
This parameter is a measure of the thermal energy relative to the
elastic energy stored in the particles and vanishes in the athermal
limit. For our system, kBT

e ∼ 1× 10−14, much less than the value
found in other systems treated as athermal (46). The significance
of rate effects that could arise from capillary bridge formation is
quantified in the parameter _γτ, where _γ is the strain rate and τ is
the timescale associated with the nucleation of water capillaries.
Assuming a capillary nucleation timescale similar to that mea-
sured on silicon surfaces (47), _γτ∼ 1× 10−11, indicating that
nucleation events occur at timescales much smaller than the
timescale associated with the imposed strain. With thermal
fluctuations absent, the applied stress alone surmounts the local
energy maxima, ultimately driving the cooperative events. In
turn, the compatibility constraint of the elastic matrix on shear
transformation (cooperative rearrangement of a collection of
particles with a characteristic shear strain γTo ) provides the long-
range interaction to drive localized failure. Taken as a whole, the
similarities in macroscopic yielding strain, characteristic STZ
strain, and shear band morphology between our colloidal pack-
ings and metallic glasses, despite the dissipative nature of our
particle–particle interactions, lend support to the notion of
a universal cooperative plastic event unique to amorphous solids
with the capacity for plastic flow.
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SI Text
Error and Uncertainty Analysis. The uncertainties in measured quan-
tities, δ, are

transmitted force δF =

8<
:

5× 10−3 N 1000 g−F transducer
5× 10−4 N 100 g−F transducer
5× 10−5 N 10 g−F transducer

;

specimen diameter δD = 2 μm;

specimen cross-sectional area δAo =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδDÞ2ðπDÞ2

q
;

specimen length δlo = 2 μm;

specimen change in length δΔl = 10× 10−4 × lo;

unfilled capillary mass δmunfilled = 2 μg;

filled capillary mass δmfilled = 2 μg;

micropillar length in capillary δL = 10 μm:

We assume an uncorrelated propagation of error. The uncer-
tainties in the reported quantities hϕi, σmax, and Eload are given by

hϕi=
�
mfilled −mempty

��
ρPS

πðD=2Þ2L ;

σmax =
F
Ao

;

δσmax =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδFmaxÞ2

�
1
A0

�2

+ ðδAoÞ2
 
−Fmax

A2
0

!2
vuut ;

Eload ∝
Flo
AoΔl

;

δEload =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδFÞ2

�
lo

AoΔl

�2
+ ðδlo Þ2

�
F

AoΔl

�2
+ ðδAo Þ2

 
−Flo
A2
oΔl

!2

+ ðδΔlÞ2
�

−Flo
AoΔl2

�2vuut :

For the linear fit of σmax = βEload, we report the 95% CI for the
regression analysis.

Effects of Dissipation in Stiffness Determination. Prior work (1) has
shown that the micropillars are quite dissipative even at small
strains. We define an efficiency, η, which is the ratio of work
done by the pillar on loading to the work done on the pillar
during loading

η=
Wunload

Wload
=
Eunloade

2
elastic

Eloade
2
total

;

with etotal = eelastic + eplastic. By construction, η= eelastic
etotal

, so rearrang-
ing yields

Eload = ηEunload:

Assuming η= 50%, we underestimate the elastic component of
stiffness (EunloadÞ by a factor of 2, i.e., 2Eload =Eunload. Because
the transformation strain magnitude, ep, is inversely proportional
to E (γTo ∝ 1=E; Eq. 4), we overestimate the transformation strain
by a factor of 2 by using Eload in the energy analysis. Therefore,
our reported value for γTo should be considered an upper bound.
In previous experiments, we quantified the dissipation in a

specimen when compressed to small strains as a function of RH.
Briefly, we found a strong dependence of η on RH with a signifi-
cant decrease in η—equivalently, an increase in dissipation—for
RH above ∼ 40%. An example of an experimental compression
cycle at RH = 50% is shown in Fig. S3.

Gibbs Free Energy of an Inclusion in an Elastic Matrix. For com-
pleteness, we reproduce the derivation by Mura (2) of the change
in the Gibbs free energy, G, of an inclusion in an elastic matrix
with an applied traction. Define

eij =
1
2

�
∂ui
∂xj

+
∂uj
∂xi

�
≡ total strain;

epij ≡ eigenstrain or transformation strain;

eij ≡ elastic strain;

σij =Cijklekl ≡ stress:

The elastic strain energy of a body subjected to an applied traction
σ∞ij and an internal stress due to an inclusion σij is given by

W p =
1
2

Z
V

�
σ∞ij + σij

��
e∞ij + eij − epij

�
dV with σ∞ij =Cijkle

∞
ij :

Equilibrium ensures that σij; j = 0 and σijnj = 0 at the surface S. In-
tegration by parts givesZ

V

σij
�
e∞ij + eij

�
dV =

Z
V

σij
�
u∞i; j + ui; j

�
dV ;

= σij
�
u∞ij + uij

���
V=S

−
Z
V

σij; j
�
u∞ij + uij

�
dV = 0:

Similarly, σ∞ij; j = 0. Because e∞ij = e∞ij and eij = eij − epij and using the
symmetry Cijkl =Cklij

δhϕi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δmfilled

�2 1
ρps AoL

!2

+
�
δmempty

�2 −1
ρpsAoL

!2

+ ðδAoÞ2
 
mempty −mfilled

ρpsA2
oL

!2

+ ðδLÞ2
 
mempty −mfilled

ρpsAoL2

!2
vuut ;
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Z
V

σ∞ij
�
eij − epij

�
dV =

Z
V

Cijklu∞k;l
�
ui; j − epij

�
dV =

Z
V

u∞k;lCklijeij dV ;

=
Z
V

u∞k;lσkl dV = uklσkl

�����
V=S

−
Z
V

u∞kl σkl;l dV = 0:

So

W p =−
1
2

Z
V

σije
p
ijdV +

1
2

Z
V

σ∞ij e
∞
ij dV :

The total potential energy is given by

G=W p −
Z
S

F∞
i

�
ui + u∞i

�
dS;

where the second term is the work done at the boundary by the
applied traction, and F∞

i = σ∞ij nj. Without any inclusions (epij = 0),
G=Go

Go =
1
2

Z
V

σ∞ij e
∞
ij dV −

Z
S

F∞
i u∞ij dS:

Without any applied tractions (σ∞ij = 0), G=G1

G1 =−
1
2

Z
V

σije
p
ijdV :

The interaction between the strain field generated by the inclu-
sions and the applied traction is

ΔG=G−Go −G1 =−
Z
S

σ∞ij uinjdS=−
Z
V

σ∞ij ui; jdV

=−
Z
V

σ∞ij
�
ui; j − epij

�
dV −

Z
V

σ∞ij e
p
ijdV =−

Z
V

σ∞ij e
p
ijdV :

by Gauss’s theorem and the fact that
R
V
σ∞ij ðui;j − epijÞdV = 0 (see

above). Therefore, with spatially homogeneous stress and
strain fields

ΔG= −
Z
V

σ∞ij e
p
ijdV =−σ∞ij e

p
ij:

For the case where the body is under an applied traction and
inclusions are introduced, the change in free energy is given by

ΔG=G−Go =ΔG+G1 =−
1
2
σije

p
ij − σ∞ij e

p
ij;

which is Eq. 1.

Derivation of the Stress Field for a Prescribed Transformation Strain.
The tensorial infinitesimal strain, eij, is given by

eij =
1
2

�
∂ui
∂xj

+
∂uj
∂xi

�
=

0
@ e11 e12 e13

e12 e22 e23
e13 e23 e33

1
A=

0
BBBBB@

e11
γ12
2

γ13
2

γ12
2

e22
γ23
2

γ13
2

γ23
2

e33

1
CCCCCA:

Define the stiffness tensor, Cijkl, for an isotropic homogeneous
solid as

Cijkl =
Eν

ð1+ νÞð1− 2νÞ δijδkl +
E

2ð1+ νÞ
�
δikδjl + δilδjk

�
;

and the constitutive relation

σij =Cijklekl;

where ekl is now the elastic component of the strain. Argon and
Shi (3) use Eshelby’s tensor for a spherical inclusion, given by

Sijkl =
5ν− 1
15ð1− νÞ δijδkl +

4− 5ν
15ð1− νÞ

�
δikδjl + δilδjk

�
:

To relate the confined strain, eCij , to the transformation strain, eTij ,
of the inclusion

ecij = SijkleTkl:

The authors assume two components of eTkl

eTkl =
eTo
3

0
@ 1 0 0

0 1 0
0 0 1

1
A+

γTo
2

0
@ 0 1 0

1 0 0
0 0 0

1
A;

where the first term accounts for dilatation and the second for
a pure shear. The stress inside the inclusion, σIij, is given by

σIij =Cijkl
�
Sklmne

T
mn − eTkl

�
:

The elastic energy in both the inclusion and matrix is given as

Eelastic =−
1
2

Z
Ωf

σIije
T
ij dV :

For the case of a spherical inclusion, in which σIij and eTij are
constants, this expression becomes

Eelastic = −
1
2
σIije

T
ijΩf :

Considering only the dilatational component of eTkl and using the
relationship E= 2μð1+ νÞ

σIij =
2EeTo

9ðν− 1Þ

0
B@

1 0 0
0 1 0
0 0 1

1
CA and Eelastic =

E
9ð1− νÞ

�
eTo
�2

=
2μð1+ νÞ
9ð1− νÞ

�
eTo
�2
;

which is the same as the second term of equation 7 in ref. 3. Now,
considering only the shear component of eTkl yields

σIij =
EγTo ð7− 5νÞ
30ðν2 − 1Þ

0
B@

0 1 0
1 0 0
0 0 0

1
CA and

Eelastic =
Eð7− 5νÞ
60ð1− ν2Þ

�
γTo
�2

=
μð7− 5νÞ
30ð1− νÞ

�
eTo
�2
;

which is the same as the first term of equation 7 in ref. 3. In the
presence of an applied far-field stress, the change in Gibb’s free
energy becomes (see previous section)
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ΔG= −
1
2
σ I
ije

T
ijΩf − σ∞ij eijΩf :

For uniaxial compression and our assumed orientation of the in-
clusion, the applied stress is

σij =
σ

2

0
@−1 1 0

1 −1 0
0 0 0

1
A:

Therefore, the change in free energy is

ΔG=
E

ν2 − 1

	
ν+ 1
9
�
eTo
�2

+
7− 5ν
60

�
γTo
�2
− σ

�
2eTo − 3γTo

�
6

:

Argon and Shi define the transformation dilatancy as

β=
eco
γco

=
45ð1− νÞ2eTo

2ð1+ νÞð4− 5νÞγTo
:

From measurements on an amorphous bubble raft, the authors
estimate β≈ 1 (3). Therefore

eTo = γTo
2ð1+ νÞð4− 5νÞ

45ð1− νÞ2 ;

with this relationship

ΔG=
ΩE
ν2 − 1

(
ν+ 1
9

"
2ð1+ νÞð4− 5νÞ

45ð1− νÞ2 γTo

#2
+
7− 5ν
60

�
γTo
�2)

+
ΩσγTo
2

−
ΩσγTo
3

2ð1+ νÞð4− 5νÞ
45ð1− νÞ2 :

Setting ΔG= 0 and rearranging yields

σ

E
=
γTo
�
5;675ν5−33;365ν4+70;934ν3−74;578ν2+39;967ν−8;761

�
270ðν− 1Þ3ð155ν3 − 111ν2 − 147ν+ 119Þ

≡ γTo θðνÞ:

1. Strickland DJ, et al. (2014) Synthesis and mechanical response of disordered colloidal
micropillars. Phys Chem Chem Phys 16(22):10274–10285.

2. Mura T (1987) Micromechanics of Defects in Solids (Springer, Berlin), Vol 3.

3. Argon AS, Shi L (1983) Development of visco-plastic deformation in metallic glasses.
Acta Metall 31(4):499–507.

500 μm

500 μm

(a)

(b)

Fig. S1. Laser-scanning confocal micrographs of deformed micropillar specimens. (A) A specimen with ϕ=0:559 compressed at RH= 60%. Failure results from
the development of a shear band that propagates from the specimen/punch interface to the specimen surface. (B) A specimen with ϕ= 0:687 compressed at
RH= 50%. The darker region outlined by the dashed red line has been sheared out of plane.
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Fig. S2. Idealized compressive response showing loading and unloading moduli.

Fig. S3. Experimental compressive response of a colloidal micropillar at 50% RH. The stiffness on unloading is larger than the measured stiffness on loading.

Fig. S4. A comparison of the shear component of the transformation strain, γTo , for colloidal micropillars, glassy polymers, and metallic glasses (see Table S1 for
values and references). Atlhough the elastic moduli of the materials span five orders of magnitude, the kinematics of the proposed plastic event remain
remarkably similar.
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